FGF4 Independent Derivation of Trophoblast Stem Cells from the Common Vole

نویسندگان

  • Elena V. Grigor'eva
  • Alexander I. Shevchenko
  • Nina A. Mazurok
  • Eugeny A. Elisaphenko
  • Antonina I. Zhelezova
  • Alexander G. Shilov
  • Pavel A. Dyban
  • Andrey P. Dyban
  • Ekaterina M. Noniashvili
  • Sergey Ya. Slobodyanyuk
  • Tatyana B. Nesterova
  • Neil Brockdorff
  • Suren M. Zakian
چکیده

The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos.

We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 de...

متن کامل

13-P051 A temporal integration of BMP signalling controls progressive progenitor specification in the ventral diencephalon

ectoderm/extraembryonic ectoderm in the peri-implantation embryos, have the capacity to self-renew in the presence of FGF4 and mouse embryonic fibroblasts (MEFs). Using an in vitro system of embryonic stem (ES) cells, we have reported that the trophoblast lineage can be specified by activation of Cdx2. During differentiation, cells can adopt stem cell fate in the presence of FGF4/MEFs, otherwis...

متن کامل

13-P053 Signaling factors in the specification of the cochlear tonotopic gradient

ectoderm/extraembryonic ectoderm in the peri-implantation embryos, have the capacity to self-renew in the presence of FGF4 and mouse embryonic fibroblasts (MEFs). Using an in vitro system of embryonic stem (ES) cells, we have reported that the trophoblast lineage can be specified by activation of Cdx2. During differentiation, cells can adopt stem cell fate in the presence of FGF4/MEFs, otherwis...

متن کامل

Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment.

Before implantation in the uterus, mammalian embryos set aside trophoblast stem cells that are maintained in the extraembryonic ectoderm (ExE) during gastrulation to generate the fetal portion of the placenta. Their proliferation depends on diffusible signals from neighboring cells in the epiblast, including fibroblast growth factor 4 (Fgf4). Here, we show that Fgf4 expression is induced by the...

متن کامل

13-P052 Identification of a new Dapper 1 isoform generated by 3′ alternative splicing of exon 4

ectoderm/extraembryonic ectoderm in the peri-implantation embryos, have the capacity to self-renew in the presence of FGF4 and mouse embryonic fibroblasts (MEFs). Using an in vitro system of embryonic stem (ES) cells, we have reported that the trophoblast lineage can be specified by activation of Cdx2. During differentiation, cells can adopt stem cell fate in the presence of FGF4/MEFs, otherwis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009